#### **Gravimetric Analysis:**



| Weighing the<br>sample to be<br>analyzed. | Dissolving<br>this sample in<br>water. | Adding a<br>suitable<br>chemical to<br>form a<br>precipitate. | Filtering to<br>collect the<br>precipitate | Repeated<br>drying and<br>weighing until<br>a constant<br>mass of<br>precipitate is<br>obtained. |
|-------------------------------------------|----------------------------------------|---------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------|
|-------------------------------------------|----------------------------------------|---------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------|

### **Common Mistakes:**

- Precipitate is not dry when you take the final mass.
  - Results in the appearance of more precipitate than was actually produced because some mass is water.
  - Percent yield would be higher than it should be.

### **Common Applications:**

• Mixtures of solids—determining the amount of a particular ion in a solution

### Important to Remember:

• All sodium, nitrate, ammonium, and potassium compounds are soluble. Net ionic equations would not include these ions.



#### **Common Mistakes:**

- Overfilling the volumetric flask
  - o Results in a dilute solution
- Not using distilled water.
  - o Other ions could affect the experiment for which the solution is used
- Not using a volumetric flask (beaker or Erlenmeyer instead)
  - o Loss of precision in concentration of prepared solution

### **Common Applications:**

• Making solutions to dissolve substances for analysis, particularly in titrations.

#### Important to Remember:

• Molarity = moles solute/L of solution



### **Common Mistakes:**

- Overshooting the titration (too dark of a color at the end)
  - Results in the concentration of the unknown solution in the flask appearing to be higher than it actually is, since too much titrant has been added.
- Not using indicator.
  - No perceivable endpoint.
- Using incorrect indicator.
  - pH at the equivalence point should be approximately equal to the pKa of the indicator.

### **Common Applications:**

- Solving for the concentration of an unknown substance (analyte).
- Acid/Base, Redox

- Molarity = moles solute/L of solution
- Analyte: substance in flask
- Titrant: substance in buret
- Standard solution: solution of known concentration, usually goes into the buret.
- $M_1V_1 = M_2V_2$  is helpful for solving for the concentration of the analyte solution at the equivalence point.
- Endpoint: point in titration where flask solution changes color
- Equivalence point: point in the titration where the moles of acid are equal to the moles of base

Analyzing Concentration of Solutions Using Beer's Law):



Step 1: Pick the wavelength for the solution where absorbance is highest (for solute).



Step 2: Measure absorbance for different concentrations at that wavelength. Graph the results.



A = εbc

Absorbance = (molar absorptivity)(cuvette pathway length)(concentration)

### **Common Mistakes:**

- Absorbance is lower than it should be (point falls below the line)
  - Cuvette was cleaned with distilled water and then immediately filled with solution, creating a more dilute solution
  - Too little solute in the prepared solution
- Absorbance is higher than it should be (point falls above the line)
  - $\circ$   $\;$  Cuvette is dirty with fingerprints/dust, etc.
  - Too much solute in the prepared solution
  - o Contamination with a more concentrated solution
  - Used a cuvette with a longer path for one data point
- Did not use the correct wavelength of maximum absorbance for the solute.
  - Absorbances could be too low especially for dilute solutions
- Overfilled the cuvette
  - o Should not have an impact on data
- Picked a wavelength where it is high absorbance for the solvent
  - Won't be able to distinguish absorbance due to solvent vs. solute

### **Common Applications:**

- Determining the concentration of a solution of unknown concentration using solutions of known concentration
- Kinetics reactions (like bleach + blue food dye)

- Before using, you need to calibrate the spectrophotometer with a blank of just solvent (in order to account for any absorbance due to solvent and cuvette itself)
- Molarity = moles solute/L of solution
- Absorbance is the amount of light the solution absorbs at a specific wavelength
- Molar absorptivity (1/M\*cm) describes how intensely a sample absorbs light at a specific wavelength (constant unique to the substance at a specific wavelength)
- Path length of sample is the length of the cuvette where the light will travel (cm)
- Concentration is molarity

### Chromatography





### **Common Mistakes:**

- Solvent reaches the top of the paper strip.
  - Rf values cannot be calculated as we do not know how far the solvent would have traveled had their been more paper.
- No major difference in polarity between paper and solvent
  - Substances cannot be adequately separated
- No major differences in polarity of components of mixture
  - o Substances cannot be adequately separated

### **Common Applications:**

• Determining the components of a mixture

- Paper is usually relatively nonpolar in comparison to the solvent.
- The substance that travels further up the paper is more attracted to the solvent.
- The substance that travels the least is most attracted to the paper.
- If multiple trials are run, compare Rf values, not relative heights.
- Polar substances tend to lack symmetry, have polar bonds, and have lone pairs on the central atom. They are most soluble in other polar substances.
- Nonpolar substances tend to be symmetrical, have identical bonds, and have no lone pairs on the central atom. They are most soluble in other nonpolar substances.

### **Fractional Distillation**



### **Common Applications:**

• Separating components in a solution/mixture based on differences in boiling point

- The substance with the lower boiling point has a greater vapor pressure and weaker intermolecular forces
- The substance with the higher boiling point has a lower vapor pressure and stronger intermolecular forces
- The temperature of the solution will remain constant while a component is boiling off

### **Coffee Cup Calorimetry**



### **Common Mistakes:**

• The final temperature is the highest (for exothermic) or lowest (for endothermic) temperature recorded during the reaction/process

## **Applications:**

• Solving for the specific heat of a metal or the heat of reaction

- Endothermic processes have a drop in temperature.
- Exothermic processes have an increase in temperature.
- The water is not part of the system. It is part of the surroundings.
- $q = mC\Delta T$ 
  - q = heat in Joules or calories
  - o m = mass of entire solution OR object, grams or kilograms
  - $\circ$  C = specific heat capacity, J/g°C (or a variation of the above)
  - $_{\circ}$   $\Delta T = T_{\text{final}} T_{\text{initial}}$